
Lawrence Livermore National Laboratory

LLNL-PRES-403029

Is Dynamic Memory Management Dynamic Enough?

Jeff Keasler
High Speed Computing Conference

Salishan 2008

Prepared by LLNL under Contract DE-AC52-07NA27344



2
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Unix/C Dynamic Memory Management

� Malloc() is used to allocate contiguous blocks of 
(virtual) heap memory.

� Malloc() API was invented for the PDP 7
• 1.75us memory access time was faster than the 

3.5us add instruction time.
• Memory access had a uniform speed.

� Memory access time is now
• 200+ times slower than the add instruction time.
• Hierarchical in nature.



3
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Unix/C Memory Management

Does It Need an Upgrade?

� The Malloc() API is a simple model that people are 
comfortable with.

� The Malloc()/C API could be extended to capture 
performance throughout the memory hierarchy.

� Is there evidence a change to the Malloc()/C API would 
be worth pursuing?



4
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Hardware Optimizations Often

Require Memory Alignment

144012801000000

18301290500000

37201290100000

3720129010000

827033401000

63003040100

Aligned(MB/s)Unaligned(MB/s)Array Size

BG/L memory throughput: a[i] = b[i] + ss*c[i]

Results: Norris, Hartono, Gropp



5
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Hardware Optimizations Depend

on Memory Layout Choices

� An x86 SSE enabled processor often optimizes well 
with unaliased aligned array-like data:
• double *x = new double[10000] ;

double *y = new double[10000] ;
double *z = new double[10000] ;

� But some applications/architectures optimize best with 
struct-like data due to reduced register pressure or 
better use of prefetch streams:
• typedef struct { double x, y, z ; } Coord_t;

Coord_t *coord = new Coord_t[10000] ;



6
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Compiler Optimizations Depend

on Memory Layout Choices

Quadrilateral Volume Calculation
Restricted Pointers

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Structure Choice

Ti
m

e 
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

GNU sees good optimizations for 
the first and third layout, while
PathScale sees good optimizations 
for the second and fourth.



7
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Compiler Optimizations Depend

on Memory Layout Choices

Quadrilateral Volume Calculation
Restricted Pointers

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Structure Choice

Ti
m

e 
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

GNU sees good optimizations for 
the first and third layout, while
PathScale sees good optimizations 
for the second and fourth.

Quadrilateral Volume Calculation
C++ STL

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Structure Choice

T
im

e 
(s

ec
o

n
d

s)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

PGI sees more optimizations when 
using the STL.



8
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Extending Malloc() Could Improve

Reuse of Cache Memory

� Malloc()/C could be extended to minimize
inter-array cache conflict
• Modify base address and padding (Rivera, Tseng).
• Separate declaration and allocation phase?

� Malloc()/C could be further extended to minimize
inter-core cache conflict
• Requires use of HugeTLB pages.
• Would work best with O/S and hardware thread-

team scheduling support.



9
LLNL-PRES-403029 Lawrence Livermore National Laboratory

Unix/C Dynamic Memory Management

� Effective dynamic memory management is key to 
performance portability across emerging architectures.

� Would it be acceptable to explore new models for 
Malloc()/C interactions?

� Could we reap the benefits without any changes to 
existing legacy code?


